Allen, J., Howland, B., Mobius, M., Rothschild, D. y Watts, D. J. (2020). Evaluating the fake news problem
at the scale of the information ecosystem. Science Advances , 6(14), eaay3539.
https://doi.org/10.1126/sciadv.aay3539
Alon, I., Farrell, M. y Li, S. (2020). Regime type and COVID-19 response. FIIB Business Review, 9(3), 152
https://doi.org/10.1177/2319714520928884
Aparicio, J. y Márquez, J. (2005). Diagnóstico y especificación de modelos panel en Stata 8.0. División de
Estudios Políticos, CIDE. https://bit.ly/3WEhMKX
Balinska, M. y Rizzo, C. (2009). Behavioural responses to influenza pandemics: What do we know? PLoS
Currents, 1. https://doi.org/10.1371/CURRENTS.RRN1037
Bardey, D., Fernández, M. y Gravel, A. (2021). Coronavirus and social distancing: Do non pharmaceuticalinterventions
work (at least) in the short run? Serie Documentos Cede n.° 4.
https://doi.org/10.2139/ssrn.3778714
Bargain, O. y Aminjonov, U. (2020). Trust and compliance to public health policies in times of COVID-19.
Journal of Public Economics , 192, 104316. https://doi.org/10.1016/j.jpubeco.2020.104316
Beck, N. y Katz, J. N. (1995). What to do (and not to do) with time-series cross-section data. American
Political Science Review, 89(3), 634 647. https://doi.org/10.2307/2082979
Bjørnskov, C. (2007). Determinants of generalized trust: A cross-country comparison. Public Choice,
(1 2), 1 21. https://doi.org/10.1007/s11127-006-9069-1
Blair, R. A., Morse, B. S. y Tsai, L. L. (2017). Public health and public trust: Survey evidence from the Ebola
Virus Disease epidemic in Liberia. Social Science & Medicine, 172, 89 97.
https://doi.org/10.1016/J.SOCSCIMED.2016.11.016
Blavatnik School of Government. (2020). COVID-19 government response tracker. https://bit.ly/3zGAYO1
Bunyavejchewin, P. y Sirichuanjun, K. (2021). How regime type and governance quality affect policy
responses to COVID-19: A preliminary analysis. Heliyon, 7(2), e06349.
https://doi.org/10.1016/j.heliyon.2021.e06349
Calderón-Larrañaga, A., Dekhtyar, S., Vetrano, D. L., Bellander, T. y Fratiglioni, L. (2020). COVID-19: risk
accumulation among biologically and socially vulnerable older populations. Ageing Research
Reviews, 63, 101149. https://doi.org/10.1016/j.arr.2020.101149
Caleo, G., Duncombe, J., Jephcott, F., Lokuge, K., Mills, C., Looijen, E., Theoharaki, F., Kremer, R., Kleijer,
K., Squire, J., Lamin, M., Stringer, B., Weiss, H. A., Culli, D., Di Tanna, G. L. y Greig, J. (2018). The
factors affecting household transmission dynamics and community compliance with Ebola control
measures: a mixed-methods study in a rural village in Sierra Leone. (2018). BMC Public Health,
(1), 1 13. https://doi.org/10.1186/S12889-018-5158-6
Cepaluni, G., Dorsch, M. y Branyiczki, R. (2020). Political regimes and deaths in the early stages of the
COVID-19 pandemic. SSRN Electronic Journal . https://doi.org/10.2139/ssrn.3586767
Cevik, M., Kuppalli, K., Kindrachuk, J. y Peiris, M. (2020). Virology, transmission, and pathogenesis of
SARS-CoV-2. BMJ, 371, m3862. https://doi.org/10.1136/bmj.m3862
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T.,
Zhang, X. y Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel
coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet , 395(10223), 507 513.
https://doi.org/10.1016/S0140-6736(20)30211-7
Conway, L. G., Woodard, S., Zubrod, A. y Chan, L. (2020). Why are conservatives less concerned about the
coronavirus (COVID-19) than liberals? Comparing Political, Experiential, and Partisan Messaging
Explanations. https://doi.org/10.31234/osf.io/fgb84
Eysenbach, G. (2009). Infodemiology and infoveillance: Framework for an emerging set of public health
informatics methods to analyze search, communication and publication behavior on the internet.
Journal of Medical Internet Research, 11(1). https://doi.org/10.2196/JMIR.1157
Fenichel, E. P. (2013). Economic considerations for social distancing and behavioral based policies during
an epidemic. Journal of Health Economics , 32(2), 440 451.
https://doi.org/10.1016/j.jhealeco.2013.01.002
Festinger, L. (1957). A theory of cognitive dissonance (vol. 2). Stanford University Press.
Gallup World Poll. (2021). Country data set details . https://bit.ly/2VLXLFB
Google. (2020a). Coronavirus . Google Trends. https://trends.google.it/trends/?geo=CO
Google. (2020b). Informes de movilidad local sobre el COVID-19.
https://www.google.com/covid19/mobility/
Greer, S. L., King, E. J., da Fonseca, E. M. y Peralta-Santos, A. (2020). The comparative politics of COVID-
: The need to understand government responses. Global Public Health , 15(9), 1413 1416.
https://doi.org/10.1080/17441692.2020.1783340
Hale, T., Petherick, A., Phillips, T. y Webster, S. (2020). Variation in government responses to COVID-19.
Iyengar, S., Lelkes, Y., Levendusky, M., Malhotra, N. y Westwood, S. J. (2019). The origins and consequences
of affective polarization in the United States. Annual Review of Political Science, 22, 129 146.
https://doi.org/10.1146/annurev-polisci-051117-073034
Johns Hopkins Coronavirus Resource Center. (2020). COVID-19 Map. https://bit.ly/3h0WS8d
Kahneman, D. y Tversky, A. (1987). Teoría prospectiva: Un análisis de la decisión bajo riesgo. Estudios de
Psicología, 8(29 30), 95 124. https://doi.org/10.1080/02109395.1987.10821483
Lee, M., Zhao, J., Sun, Q., Pan, Y., Zhou, W., Xiong, C. y Zhang, L. (2020). Human mobility trends during
the early stage of the COVID-19 pandemic in the United States. PLoS ONE, 15(11).
https://doi.org/10.1371/journal.pone.0241468
Lynas, M. (2020). COVID: 10 principales teorías de conspiración. Alliance for Science.
Mehraeen, E., Karimi, A., Barzegary, A., Vahedi, F., Afsahi, A. M., Dadras, O., Moradmand-Badie, B., Seyed
Alinaghi, S. A. y Jahanfar, S. (2020). Predictors of mortality in patients with COVID-19 a systematic
review. European Journal of Integrative Medicine, 40, 101226.
https://doi.org/10.1016/j.eujim.2020.101226
Miguel, F. K., Machado, G. M., Pianowski, G. y Carvalho, L. de F. (2021). Compliance with containment
measures to the COVID-19 pandemic over time: Do antisocial traits matter? Personality and
Individual Differences , 168, 110346. https://doi.org/10.1016/j.paid.2020.110346
Mukhtar, S. (2020). Psychological health during the coronavirus disease 2019 pandemic outbreak.
International Journal of Social Psychiatry, 66(5), 512 516.
https://doi.org/10.1177/0020764020925835
Murphy, K., Williamson, H., Sargeant, E. y McCarthy, M. (2020). Why people comply with COVID-19
social distancing restrictions: Self-interest or duty? Journal of Criminology, 53(4), 477 496.
https://doi.org/10.1177/0004865820954484
Okoi, O. y Bwawa, T. (2020). How health inequality affect responses to the COVID-19 pandemic in Sub-
Saharan Africa. World Development, 135, 105067. https://doi.org/10.1016/j.worlddev.2020.105067
Onchonga, D. (2020). A Google Trends study on the interest in self-medication during the 2019 novel
coronavirus (COVID-19) disease pandemic. Saudi Pharmaceutical Journal , 28(7), 903 904.
https://doi.org/10.1016/j.jsps.2020.06.007
Organización Panamericana de la Salud (OPS). (2009). Intervenciones no farmacéuticas: medidas para
limitar la propagación de la pandemia en su municipio. https://bit.ly/3U1xjmd
Pak, A., McBryde, E. y Adegboye, O. A. (2021a). Does high public trust amplify compliance with stringent
COVID-19 government health guidelines? A multi-country analysis using data from 102,627
individuals. Risk Management and Healthcare Policy, 14, 293 302.
https://doi.org/10.2147/RMHP.S278774
Peak, C. M., Wesolowski, A., zu Erbach-Schoenberg, E., Tatem, A. J., Wetter, E., Lu, X., Power, D.,
Weidman-Grunewald, E., Ramos, S., Moritz, S., Buckee, C. O. y Bengtsson, L. (2018). Population
mobility reductions associated with travel restrictions during the Ebola epidemic in Sierra Leone:
use of mobile phone data. International Journal of Epidemiology, 47(5), 1562 1570.
https://doi.org/10.1093/IJE/DYY095
Piovani, D., Christodoulou, M. N., Hadjidemetriou, A., Pantavou, K., Zaza, P., Bagos, P. G., Bonovas, S. y
Nikolopoulos, G. K. (2021). Effect of early application of social distancing interventions on COVID-
mortality over the first pandemic wave: An analysis of longitudinal data from 37 countries.
Journal of Infection, 82(1), 133 142. https://doi.org/10.1016/j.jinf.2020.11.033
Prati, G., Pietrantoni, L. y Zani, B. (2011a). Compliance with recommendations for pandemic influenza
H1N1 2009: the role of trust and personal beliefs. Health Education Research, 26(5), 761 769.
https://doi.org/10.1093/HER/CYR035
Quinn, S. C., Kumar, S., Freimuth, V. S., Kidwell, K. y Musa, D. (2009). Public willingness to take a vaccine
or drug under emergency use authorization during the 2009 H1N1 pandemic. Biosecurity and
Bioterrorism: Biodefense Strategy, Practice, and Science , 7(3), 275.
https://doi.org/10.1089/BSP.2009.0041
Roser, M., Ritchie, H., Ortiz-Ospina, E. Mathieu, E., Rodés-Guirao, L., Appel, C., Giattino, C., Macdonald,
B., Dattani, S., Beltekian, D. y Hasell, J. (2020). Coronavirus pandemic (COVID-19). In our world
in data. https://ourworldindata.org/coronavirus
Rovetta, A. y Bhagavathula, A. S. (2020). Global infodemiology of COVID-19: Analysis of Google Web
searches and Instagram hashtags. Journal of Medical Internet Research, 22(8).
Schaller, M. y Neuberg, S. L. (2012). Danger, disease, and the nature of prejudice(s). Advances in
Experimental Social Psychology, 46, 1 54. https://doi.org/10.1016/B978-0-12-394281-4.00001-5
Siegrist, M. y Zingg, A. (2014). The role of public trust during pandemics: Implications for crisis
communication. European Psychologist , 19(1), 23 32. https://doi.org/10.1027/1016-9040/a000169
Tatapudi, H., Das, R. y Das, T. K. (2020). Impact assessment of full and partial stay-at-home orders, face
mask usage, and contact tracing: An agent-based simulation study of COVID-19 for an urban
region. Global Epidemiology, 2, 100036. https://doi.org/10.1016/j.gloepi.2020.100036
van der Linden, C. y Savoie, J. (2020). Does collective interest or self-interest motivate mask usage as a
preventive measure against Covid-19? Canadian Journal of Political Science, 53(2), 391 397.
https://doi.org/10.1017/S0008423920000475
van der Weerd, W., Timmermans, D. R., Beaujean, D. J., Oudhoff, J. y van Steenbergen, J. E. (2011).
Monitoring the level of government trust, risk perception and intention of the general public to
adopt protective measures during the influenza A (H1N1) pandemic in the Netherlands. BMC
Public Health, 11. https://doi.org/10.1186/1471-2458-11-575
Vannoni, M., McKee, M., Semenza, J. C., Bonell, C. y Stuckler, D. (2020). Using volunteered geographic information to assess mobility in the early phases of the COVID-19 pandemic: A cross-city time series analysis of 41 cities in 22 countries from March 2nd to 26th 2020. Global Health, 16. https://doi.org/10.1186/s12992-020-00598-9
Woelfert, F. S. y Kunst, J. R. (2020). How political and social trust can impact social distancing practices
during COVID-19 in unexpected ways. Frontiers in Psychology.
https://doi.org/10.3389/fpsyg.2020.572966
Wooldridge, J. (2010). Introducción a la econometría. Un enfoque moderno. C. L. Editores.
World Bank. (2021). Global economic prospects, January 2021. https://bit.ly/3hbaBJy
Xu, P. y Cheng, J. (2021). Individual differences in social distancing and mask-wearing in the pandemic of
COVID-19: The role of need for cognition, self-control and risk attitude. Personality and Individual
Differences , 175, 110706. https://doi.org/10.1016/j.paid.2021.110706